Effects of negation and uncertainty stratification on text-derived patient profile similarity.
Slater, Luke T ; Karwath, Andreas ; Hoehndorf, Robert ; Gkoutos, Georgios V
Slater, Luke T
Karwath, Andreas
Hoehndorf, Robert
Gkoutos, Georgios V
Citations
Altmetric:
Affiliation
Other Contributors
Publication date
2021-12-06
Subject
Collections
Research Projects
Organizational Units
Journal Issue
Abstract
Semantic similarity is a useful approach for comparing patient phenotypes, and holds the potential of an effective method for exploiting text-derived phenotypes for differential diagnosis, text and document classification, and outcome prediction. While approaches for context disambiguation are commonly used in text mining applications, forming a standard component of information extraction pipelines, their effects on semantic similarity calculations have not been widely explored. In this work, we evaluate how inclusion and disclusion of negated and uncertain mentions of concepts from text-derived phenotypes affects similarity of patients, and the use of those profiles to predict diagnosis. We report on the effectiveness of these approaches and report a very small, yet significant, improvement in performance when classifying primary diagnosis over MIMIC-III patient visits
Citation
Slater LT, Karwath A, Hoehndorf R, Gkoutos GV. Effects of Negation and Uncertainty Stratification on Text-Derived Patient Profile Similarity. Front Digit Health. 2021 Dec 6;3:781227. doi: 10.3389/fdgth.2021.781227
Type
Article