Development of automated neural network prediction for echocardiographic left ventricular ejection fraction.
Zhang, Yuting ; Liu, Boyang ; Bunting, Karina V ; Brind, David ; Thorley, Alexander ; Karwath, Andreas ; Lu, Wenqi ; Zhou, Diwei ; Wang, Xiaoxia ; Mobley, Alastair R ... show 4 more
Zhang, Yuting
Liu, Boyang
Bunting, Karina V
Brind, David
Thorley, Alexander
Karwath, Andreas
Lu, Wenqi
Zhou, Diwei
Wang, Xiaoxia
Mobley, Alastair R
Citations
Altmetric:
Affiliation
Other Contributors
Publication date
2024-04-03
Subject
Collections
Research Projects
Organizational Units
Journal Issue
Abstract
This method was developed and internally validated in an open-source dataset containing 10,030 echocardiograms. The Pearson's correlation coefficient was 0.83 for LVEF prediction compared to expert human analysis (p < 0.001), with a subsequent area under the receiver operator curve (AUROC) of 0.98 (95% confidence interval 0.97 to 0.99) for categorisation of HF with reduced ejection (HFrEF; LVEF<40%). In an external dataset with 200 echocardiograms, this method achieved an AUC of 0.90 (95% confidence interval 0.88 to 0.91) for HFrEF assessment.
Citation
Zhang Y, Liu B, Bunting KV, Brind D, Thorley A, Karwath A, Lu W, Zhou D, Wang X, Mobley AR, Tica O, Gkoutos GV, Kotecha D, Duan J. Development of automated neural network prediction for echocardiographic left ventricular ejection fraction. Front Med (Lausanne). 2024 Apr 3;11:1354070. doi: 10.3389/fmed.2024.1354070. PMID: 38686369; PMCID: PMC11057494.
Type
Article