Publication

Analysis of preplatelets and their barbell platelet derivatives by imaging flow cytometry.

Kemble, Samuel
Dalby, Amanda
Lowe, Gillian C
Nicolson, Phillip L R
Watson, Steve P
Senis, Yotis
Thomas, Steven G
Harrison, Paul
Citations
Altmetric:
Affiliation
Other Contributors
Publication date
2022-05-10
Collections
Research Projects
Organizational Units
Journal Issue
Abstract
Circulating large "preplatelets" undergo fission via barbell platelet intermediates into two smaller, mature platelets. In this study, we determine whether preplatelets and/or barbells are equivalent to reticulated/immature platelets by using ImageStream flow cytometry and super-resolution microscopy. Immature platelets, preplatelets, and barbells were quantified in healthy and thrombocytopenic mice, healthy human volunteers, and patients with immune thrombocytopenia or undergoing chemotherapy. Preplatelets and barbells were 1.9% ± 0.18%/1.7% ± 0.48% (n = 6) and 3.3% ± 1.6%/0.5% ± 0.27% (n = 12) of total platelet counts in murine and human whole blood, respectively. Both preplatelets and barbells exhibited high expression of major histocompatibility complex class I with high thiazole orange and Mitotracker fluorescence. Tracking dye experiments confirmed that preplatelets transform into barbells and undergo fission ex vivo to increase platelet counts, with dependence on the cytoskeleton and normal mitochondrial respiration. Samples from antibody-induced thrombocytopenia in mice and patients with immune thrombocytopenia had increased levels of both preplatelets and barbells correlating with immature platelet levels. Furthermore, barbells were absent after chemotherapy in patients. In mice, in vivo biotinylation confirmed that barbells, but not all large platelets, were immature. This study demonstrates that a subpopulation of large platelets are immature preplatelets that can transform into barbells and undergo fission during maturation.
Citation
Kemble S, Dalby A, Lowe GC, Nicolson PLR, Watson SP, Senis Y, Thomas SG, Harrison P. Analysis of preplatelets and their barbell platelet derivatives by imaging flow cytometry. Blood Adv. 2022 May 10;6(9):2932-2946. doi: 10.1182/bloodadvances.2021006073
Type
Article
Description
Embedded videos