Two-dimensional population receptive field mapping of human primary somatosensory cortex.
Abstract
Functional magnetic resonance imaging can provide detailed maps of how sensory space is mapped in the human brain. Here, we use a novel 16 stimulator setup (a 4 × 4 grid) to measure two-dimensional sensory maps of between and within-digit (D2-D4) space using high spatial-resolution (1.25 mm isotropic) imaging at 7 Tesla together with population receptive field (pRF) mapping in 10 participants. Using a 2D Gaussian pRF model, we capture maps of the coverage of digits D2-D5 across Brodmann areas and estimate pRF size and shape. In addition, we compare results to previous studies that used fewer stimulators by constraining pRF models to a 1D Gaussian Between Digit or 1D Gaussian Within Digit model. We show that pRFs across somatosensory areas tend to have a strong preference to cover the within-digit axis. We show an increase in pRF size moving from D2-D5. We quantify pRF shapes in Brodmann area (BA) 3b, 3a, 1, 2 and show differences in pRF size in Brodmann areas 3a-2, with larger estimates for BA2. Generally, the 2D Gaussian pRF model better represents pRF coverage maps generated by our data, which itself is produced from a 2D stimulation grid.Citation
Asghar M, Sanchez-Panchuelo R, Schluppeck D, Francis S. Two-Dimensional Population Receptive Field Mapping of Human Primary Somatosensory Cortex. Brain Topogr. 2023 Nov;36(6):816-834. doi: 10.1007/s10548-023-01000-8. Epub 2023 Aug 27.Type
ArticleAdditional Links
https://link.springer.com/journal/10548PMID
37634160Journal
Brain TopographyPublisher
Springerae974a485f413a2113503eed53cd6c53
10.1007/s10548-023-01000-8