Show simple item record

dc.contributor.authorWilson, Lydia J
dc.contributor.authorKiffer, Frederico C
dc.contributor.authorBerrios, Daniel C
dc.contributor.authorBryce-Atkinson, Abigail
dc.contributor.authorCostes, Sylvain V
dc.contributor.authorGevaert, Olivier
dc.contributor.authorMatarèse, Bruno F E
dc.contributor.authorMiller, Jack
dc.contributor.authorMukherjee, Pritam
dc.contributor.authorPeach, Kristen
dc.contributor.authorSchofield, Paul N
dc.contributor.authorSlater, Luke T
dc.contributor.authorLangen, Britta
dc.date.accessioned2023-10-18T10:51:06Z
dc.date.available2023-10-18T10:51:06Z
dc.date.issued2023-02-06
dc.identifier.citationWilson LJ, Kiffer FC, Berrios DC, Bryce-Atkinson A, Costes SV, Gevaert O, Matarèse BFE, Miller J, Mukherjee P, Peach K, Schofield PN, Slater LT, Langen B. Machine intelligence for radiation science: summary of the Radiation Research Society 67th annual meeting symposium. Int J Radiat Biol. 2023;99(8):1291-1300. doi: 10.1080/09553002.2023.2173823. Epub 2023 Feb 6en_US
dc.identifier.issn0955-3002
dc.identifier.eissn1362-3095
dc.identifier.doi10.1080/09553002.2023.2173823
dc.identifier.pmid36735963
dc.identifier.urihttp://hdl.handle.net/20.500.14200/2601
dc.description.abstractThe era of high-throughput techniques created big data in the medical field and research disciplines. Machine intelligence (MI) approaches can overcome critical limitations on how those large-scale data sets are processed, analyzed, and interpreted. The 67th Annual Meeting of the Radiation Research Society featured a symposium on MI approaches to highlight recent advancements in the radiation sciences and their clinical applications. This article summarizes three of those presentations regarding recent developments for metadata processing and ontological formalization, data mining for radiation outcomes in pediatric oncology, and imaging in lung cancer.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Groupen_US
dc.relation.urlhttp://www.tandfonline.com/loi/irab20en_US
dc.subjectOncology. Pathology.en_US
dc.subjectSurgeryen_US
dc.subjectHaematologyen_US
dc.subjectHuman physiologyen_US
dc.subjectNeurologyen_US
dc.titleMachine intelligence for radiation science: summary of the Radiation Research Society 67th annual meeting symposium.en_US
dc.typeArticle
dc.source.journaltitleInternational Journal of Radiation Biology
dc.source.volume99
dc.source.issue8
dc.source.beginpage1291
dc.source.endpage1300
dc.source.countryEngland
rioxxterms.versionNAen_US
dc.contributor.trustauthorSlater, Luke T
dc.contributor.departmentResearch & Developmenten_US
dc.contributor.roleMedical and Dentalen_US
oa.grant.openaccessnaen_US


This item appears in the following Collection(s)

Show simple item record