Show simple item record

dc.contributor.authorDel Amor, Rocío
dc.contributor.authorMeseguer, Pablo
dc.contributor.authorParigi, Tommaso Lorenzo
dc.contributor.authorVillanacci, Vincenzo
dc.contributor.authorColomer, Adrián
dc.contributor.authorLaunet, Laëtitia
dc.contributor.authorBazarova, Alina
dc.contributor.authorTontini, Gian Eugenio
dc.contributor.authorBisschops, Raf
dc.contributor.authorDe Hertogh, Gert
dc.contributor.authorFerraz, Jose G
dc.contributor.authorGötz, Martin
dc.contributor.authorGui, Xianyong
dc.contributor.authorHayee, Bu'Hussain
dc.contributor.authorLazarev, Mark
dc.contributor.authorPanaccione, Remo
dc.contributor.authorParra-Blanco, Adolfo
dc.contributor.authorBhandari, Pradeep
dc.contributor.authorPastorelli, Luca
dc.contributor.authorRath, Timo
dc.contributor.authorRøyset, Elin Synnøve
dc.contributor.authorVieth, Michael
dc.contributor.authorZardo, Davide
dc.contributor.authorGrisan, Enrico
dc.contributor.authorGhosh, Subrata
dc.contributor.authorIacucci, Marietta
dc.contributor.authorNaranjo, Valery
dc.date.accessioned2024-02-27T17:32:40Z
dc.date.available2024-02-27T17:32:40Z
dc.date.issued2022-07-09
dc.identifier.citationDel Amor R, Meseguer P, Parigi TL, Villanacci V, Colomer A, Launet L, Bazarova A, Tontini GE, Bisschops R, de Hertogh G, Ferraz JG, Götz M, Gui X, Hayee B, Lazarev M, Panaccione R, Parra-Blanco A, Bhandari P, Pastorelli L, Rath T, Røyset ES, Vieth M, Zardo D, Grisan E, Ghosh S, Iacucci M, Naranjo V. Constrained multiple instance learning for ulcerative colitis prediction using histological images. Comput Methods Programs Biomed. 2022 Sep;224:107012. doi: 10.1016/j.cmpb.2022.107012. Epub 2022 Jul 9.en_US
dc.identifier.issn0169-2607
dc.identifier.eissn1872-7565
dc.identifier.doi10.1016/j.cmpb.2022.107012
dc.identifier.pmid35843078
dc.identifier.urihttp://hdl.handle.net/20.500.14200/3802
dc.description.abstractBackground and objective: Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) affecting the colon and the rectum characterized by a remitting-relapsing course. To detect mucosal inflammation associated with UC, histology is considered the most stringent criteria. In turn, histologic remission (HR) correlates with improved clinical outcomes and has been recently recognized as a desirable treatment target. The leading biomarker for assessing histologic remission is the presence or absence of neutrophils. Therefore, the finding of this cell in specific colon structures indicates that the patient has UC activity. However, no previous studies based on deep learning have been developed to identify UC based on neutrophils detection using whole-slide images (WSI). Methods: The methodological core of this work is a novel multiple instance learning (MIL) framework with location constraints able to determine the presence of UC activity using WSI. In particular, we put forward an effective way to introduce constraints about positive instances to effectively explore additional weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. In addition, we propose a new weighted embedding to enlarge the relevance of the positive instances. Results: Extensive experiments on a multi-center dataset of colon and rectum WSIs, PICASSO-MIL, demonstrate that using the location information we can improve considerably the results at WSI-level. In comparison with prior MIL settings, our method allows for 10% improvements in bag-level accuracy. Conclusion: Our model, which introduces a new form of constraints, surpass the results achieved from current state-of-the-art methods that focus on the MIL paradigm. Our method can be applied to other histological concerns where the morphological features determining a positive WSI are tiny and similar to others in the image.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rightsCopyright © 2022. Published by Elsevier B.V.
dc.subjectGastroenterologyen_US
dc.subjectClinical pathologyen_US
dc.titleConstrained multiple instance learning for ulcerative colitis prediction using histological imagesen_US
dc.typeArticle
dc.source.journaltitleComputer Methods and Programs in Biomedicine
dc.source.volume224
dc.source.beginpage107012
dc.source.endpage
dc.source.countryIreland
rioxxterms.versionNAen_US
dc.contributor.trustauthorIacucci, Marietta
oa.grant.openaccessnaen_US


Files in this item

Thumbnail
Name:
Publisher version

This item appears in the following Collection(s)

Show simple item record