Recent Submissions

  • Robinow syndrome in an extremely preterm infant: novel homozygous ROR2 variant detected by rapid exome sequencing

    McDermott, Helen; Robinson, Hannah K; Caswell, Richard; Gowda, Harsha; Offiah, Amaka; Naik, Swati; Gowda, Harsha; Neonatology; Medical and Dental; Birmingham Women's and Children's NHS Foundation Trust; Royal Devon and Exeter NHS Foundation; University of Exeter Medical School; University Hospitals Birmingham NHS Foundation Trust; University of Sheffield (Wiley-Blackwell, 2021-09-24)
    An extremely preterm infant presented with clinical and radiological features of Robinow syndrome including butterfly vertebrae, posterior rib fusion, brachydactyly, nail hypoplasia, and retromicrognathia resulting in difficult endotracheal intubation in the intensive care setting. Rapid trio exome sequencing detected a novel homozygous likely pathogenic missense variant in the ROR2 gene, NM_004560.3:c.950A>G, p.(Tyr317Cys), for which both parents were heterozygous carriers. In-silico protein modeling predicted a deleterious effect on the function of the protein. We report an extreme premature infant with novel homozygous likely pathogenic variant in the ROR2 gene consistent with autosomal recessive Robinow syndrome. This case expands the phenotypic and genotypic spectrum of this disorder and highlights the benefit of performing rapid exome sequencing early during evaluation to aid in patient management and providing accurate genetic counseling to families.
  • Rearrangement processes and structural variations show evidence of selection in oesophageal adenocarcinomas

    Ng, Alvin Wei Tian; Contino, Gianmarco; Killcoyne, Sarah; Devonshire, Ginny; Hsu, Ray; Abbas, Sujath; Su, Jing; Redmond, Aisling M; Weaver, Jamie M J; Eldridge, Matthew D; et al. (Nature Publishing Group, 2022-04-08)
    Oesophageal adenocarcinoma (OAC) provides an ideal case study to characterize large-scale rearrangements. Using whole genome short-read sequencing of 383 cases, for which 214 had matched whole transcriptomes, we observed structural variations (SV) with a predominance of deletions, tandem duplications and inter-chromosome junctions that could be identified as LINE-1 mobile element (ME) insertions. Complex clusters of rearrangements resembling breakage-fusion-bridge cycles or extrachromosomal circular DNA accounted for 22% of complex SVs affecting known oncogenes. Counting SV events affecting known driver genes substantially increased the recurrence rates of these drivers. After excluding fragile sites, we identified 51 candidate new drivers in genomic regions disrupted by SVs, including ETV5, KAT6B and CLTC. RUNX1 was the most recurrently altered gene (24%), with many deletions inactivating the RUNT domain but preserved the reading frame, suggesting an altered protein product. These findings underscore the importance of identification of SV events in OAC with implications for targeted therapies.
  • Progressive liver, kidney, and heart degeneration in children and adults affected by TULP3 mutations

    Devane, John; Ott, Elisabeth; Olinger, Eric G; Epting, Daniel; Decker, Eva; Friedrich, Anja; Bachmann, Nadine; Renschler, Gina; Eisenberger, Tobias; Briem-Richter, Andrea; et al. (Cell Press, 2022-04-08)
    Organ fibrosis is a shared endpoint of many diseases, yet underlying mechanisms are not well understood. Several pathways governed by the primary cilium, a sensory antenna present on most vertebrate cells, have been linked with fibrosis. Ciliopathies usually start early in life and represent a considerable disease burden. We performed massively parallel sequencing by using cohorts of genetically unsolved individuals with unexplained liver and kidney failure and correlated this with clinical, imaging, and histopathological analyses. Mechanistic studies were conducted with a vertebrate model and primary cells. We detected bi-allelic deleterious variants in TULP3, encoding a critical adaptor protein for ciliary trafficking, in a total of 15 mostly adult individuals, originating from eight unrelated families, with progressive degenerative liver fibrosis, fibrocystic kidney disease, and hypertrophic cardiomyopathy with atypical fibrotic patterns on histopathology. We recapitulated the human phenotype in adult zebrafish and confirmed disruption of critical ciliary cargo composition in several primary cell lines derived from affected individuals. Further, we show interaction between TULP3 and the nuclear deacetylase SIRT1, with roles in DNA damage repair and fibrosis, and report increased DNA damage ex vivo. Transcriptomic studies demonstrated upregulation of profibrotic pathways with gene clusters for hypertrophic cardiomyopathy and WNT and TGF-β signaling. These findings identify variants in TULP3 as a monogenic cause for progressive degenerative disease of major organs in which affected individuals benefit from early detection and improved clinical management. Elucidation of mechanisms crucial for DNA damage repair and tissue maintenance will guide novel therapeutic avenues for this and similar genetic and non-genomic diseases.
  • NFnetFu: a novel workflow for microbiome data fusion

    Bisht, Vartika; Acharjee, Animesh; Gkoutos, Georgios V (Elsevier, 2021-06-08)
    Microbiome data analysis and its interpretation into meaningful biological insights remain very challenging for numerous reasons, perhaps most prominently, due to the need to account for multiple factors, including collinearity, sparsity (excessive zeros) and effect size, that the complex experimental workflow and subsequent downstream data analysis require. Moreover, a meaningful microbiome data analysis necessitates the development of interpretable models that incorporate inferences across available data as well as background biomedical knowledge. We developed a multimodal framework that considers sparsity (excessive zeros), lower effect size, intrinsically microbial correlations, i.e., collinearity, as well as background biomedical knowledge in the form of a cluster-infused enriched network architecture. Finally, our framework also provides a candidate taxa/Operational Taxonomic Unit (OTU) that can be targeted for future validation experiments. We have developed a tool, the term NFnetFU (Neuro Fuzzy network Fusion), that encompasses our framework and have made it freely available at https://github.com/VartikaBisht6197/NFnetFu.
  • Linking epigenome regulation with DNA repair.

    Stankovic, Tatjana; Kwok, Marwan (Elsevier, 2022-06-09)
    No abstract available
  • Cross-species transcriptomics identifies obesity associated genes between human and mouse studies.

    Acharjee, Animesh; Wijesinghe, Susanne N; Russ, Dominic; Gkoutos, Georgios; Jones, Simon W; Russ, Dominic; Translational Medicine (BioMed Central, 2024-06-25)
    Background: Fundamentally defined by an imbalance in energy consumption and energy expenditure, obesity is a significant risk factor of several musculoskeletal conditions including osteoarthritis (OA). High-fat diets and sedentary lifestyle leads to increased adiposity resulting in systemic inflammation due to the endocrine properties of adipose tissue producing inflammatory cytokines and adipokines. We previously showed serum levels of specific adipokines are associated with biomarkers of bone remodelling and cartilage volume loss in knee OA patients. Whilst more recently we find the metabolic consequence of obesity drives the enrichment of pro-inflammatory fibroblast subsets within joint synovial tissues in obese individuals compared to those of BMI defined 'health weight'. As such this present study identifies obesity-associated genes in OA joint tissues which are conserved across species and conditions. Methods: The study utilised 6 publicly available bulk and single-cell transcriptomic datasets from human and mice studies downloaded from Gene Expression Omnibus (GEO). Machine learning models were employed to model and statistically test datasets for conserved gene expression profiles. Identified genes were validated in OA tissues from obese and healthy weight individuals using quantitative PCR method (N = 38). Obese and healthy-weight patients were categorised by BMI > 30 and BMI between 18 and 24.9 respectively. Informed consent was obtained from all study participants who were scheduled to undergo elective arthroplasty. Results: Principal component analysis (PCA) was used to investigate the variations between classes of mouse and human data which confirmed variation between obese and healthy populations. Differential gene expression analysis filtered on adjusted p-values of p < 0.05, identified differentially expressed genes (DEGs) in mouse and human datasets. DEGs were analysed further using area under curve (AUC) which identified 12 genes. Pathway enrichment analysis suggests these genes were involved in the biosynthesis and elongation of fatty acids and the transport, oxidation, and catabolic processing of lipids. qPCR validation found the majority of genes showed a tendency to be upregulated in joint tissues from obese participants. Three validated genes, IGFBP2 (p = 0.0363), DOK6 (0.0451) and CASP1 (0.0412) were found to be significantly different in obese joint tissues compared to lean-weight joint tissues. Conclusions: The present study has employed machine learning models across several published obesity datasets to identify obesity-associated genes which are validated in joint tissues from OA. These results suggest obesity-associated genes are conserved across conditions and may be fundamental in accelerating disease in obese individuals. Whilst further validations and additional conditions remain to be tested in this model, identifying obesity-associated genes in this way may serve as a global aid for patient stratification giving rise to the potential of targeted therapeutic interventions in such patient subpopulations. Keywords: Multi omics; Obesity; Transcriptomics; Translational medicine.
  • Genomic investigation of a suspected outbreak in a neonatal care unit in sub-Saharan Africa.

    Cornick, Jennifer; Musicha, Patrick; Peno, Chikondi; Seager, Ezgi; Iroh Tam, Pui-Ying; Bilima, Sithembile; Bennett, Aisleen; Kennedy, Neil; Feasey, Nicholas; Heinz, Eva; et al. (Microbiology Society, 2021-11)
    A special-care neonatal unit from a large public hospital in Malawi was noted as having more frequent, difficult-to-treat infections, and a suspected outbreak of multi-drug-resistant Klebsiella pneumoniae was investigated using genomic characterisation. All K. pneumoniae bloodstream infections (BSIs) from patients in the neonatal ward (n=62), and a subset of K. pneumoniae BSI isolates (n=38) from other paediatric wards in the hospital, collected over a 4 year period were studied. After whole genome sequencing, the strain sequence types (STs), plasmid types, virulence and resistance genes were identified. One ST340 clone, part of clonal complex 258 (CC258) and an ST that drives hospital outbreaks worldwide, harbouring numerous resistance genes and plasmids, was implicated as the likely cause of the outbreak. This study contributes molecular information necessary for tracking and characterizing this important hospital pathogen in sub-Saharan Africa.
  • Evaluating semantic similarity methods for comparison of text-derived phenotype profiles.

    Slater, Luke T; Russell, Sophie; Makepeace, Silver; Carberry, Alexander; Karwath, Andreas; Williams, John A; Fanning, Hilary; Ball, Simon; Hoehndorf, Robert; Gkoutos, Georgios V; et al. (BioMed Central, 2022-02-05)
    Background: Semantic similarity is a valuable tool for analysis in biomedicine. When applied to phenotype profiles derived from clinical text, they have the capacity to enable and enhance 'patient-like me' analyses, automated coding, differential diagnosis, and outcome prediction. While a large body of work exists exploring the use of semantic similarity for multiple tasks, including protein interaction prediction, and rare disease differential diagnosis, there is less work exploring comparison of patient phenotype profiles for clinical tasks. Moreover, there are no experimental explorations of optimal parameters or better methods in the area. Methods: We develop a platform for reproducible benchmarking and comparison of experimental conditions for patient phentoype similarity. Using the platform, we evaluate the task of ranking shared primary diagnosis from uncurated phenotype profiles derived from all text narrative associated with admissions in the medical information mart for intensive care (MIMIC-III). Results: 300 semantic similarity configurations were evaluated, as well as one embedding-based approach. On average, measures that did not make use of an external information content measure performed slightly better, however the best-performing configurations when measured by area under receiver operating characteristic curve and Top Ten Accuracy used term-specificity and annotation-frequency measures. Conclusion: We identified and interpreted the performance of a large number of semantic similarity configurations for the task of classifying diagnosis from text-derived phenotype profiles in one setting. We also provided a basis for further research on other settings and related tasks in the area.
  • Hypophosphatasia.

    Fenn, Jonathan Samuel; Lorde, Nathan; Ward, John Martin; Borovickova, Ingrid (BMJ Publishing Group, 2021-04-30)
    Hypophosphatasia (HPP) is a group of inherited disorders characterised by the impaired mineralisation of bones and/or teeth and low serum alkaline phosphatase (ALP) activity. It is caused by a mutation in the ALPL gene encoding the tissue-non-specific isoenzyme of ALP (TNSALP) resulting in a loss of function. The disease is highly heterogenous in its clinical expression ranging from stillbirth without mineralised bone to the mild form of late adult onset with symptoms and signs such as musculoskeletal pain, arthropathy, lower-extremity fractures, premature loss of teeth or an incidental finding of reduced serum ALP activity. A classification based on the age at diagnosis and the presence or absence of bone symptoms was historically used: perinatal, prenatal benign, infantile, childhood, adult and odontohypophosphatasia. These subtypes are known to have overlapping signs and complications. Three forms of HPP distinguishable by their genetic characteristics have been described: severe, moderate and mild. Severe forms of HPP (perinatal and infantile severe) are recessively inherited, whereas moderate HPP may be dominantly or recessively inherited. The biochemical hallmark of HPP is persistently low serum ALP for age and increase in natural substrates of TNSALP, pyridoxal 5'-phosphate and phosphoethanolamine supported by radiological findings. The diagnosis is confirmed by ALPL sequencing. A multidisciplinary team of experts is essential for the effective management. Calcium restriction is recommended in infants/children to manage hypercalcaemia. A targeted enzyme replacement therapy for HPP has become available and correct diagnosis is crucial to allow early treatment.
  • Genomic analysis defines clonal relationships of ductal carcinoma in situ and recurrent invasive breast cancer.

    Lips, Esther H; Kumar, Tapsi; Megalios, Anargyros; Visser, Lindy L; Sheinman, Michael; Fortunato, Angelo; Shah, Vandna; Hoogstraat, Marlous; Sei, Emi; Mallo, Diego; et al. (Nature Publishing Company, 2022-06-09)
    Ductal carcinoma in situ (DCIS) is the most common form of preinvasive breast cancer and, despite treatment, a small fraction (5-10%) of DCIS patients develop subsequent invasive disease. A fundamental biologic question is whether the invasive disease arises from tumor cells in the initial DCIS or represents new unrelated disease. To address this question, we performed genomic analyses on the initial DCIS lesion and paired invasive recurrent tumors in 95 patients together with single-cell DNA sequencing in a subset of cases. Our data show that in 75% of cases the invasive recurrence was clonally related to the initial DCIS, suggesting that tumor cells were not eliminated during the initial treatment. Surprisingly, however, 18% were clonally unrelated to the DCIS, representing new independent lineages and 7% of cases were ambiguous. This knowledge is essential for accurate risk evaluation of DCIS, treatment de-escalation strategies and the identification of predictive biomarkers
  • Functional genomics atlas of synovial fibroblasts defining rheumatoid arthritis heritability

    Ge, Xiangyu; Frank-Bertoncelj, Mojca; Klein, Kerstin; McGovern, Amanda; Kuret, Tadeja; Houtman, Miranda; Burja, Blaž; Micheroli, Raphael; Shi, Chenfu; Marks, Miriam; et al. (BioMed Central, 2021-08-25)
    Background: Genome-wide association studies have reported more than 100 risk loci for rheumatoid arthritis (RA). These loci are shown to be enriched in immune cell-specific enhancers, but the analysis so far has excluded stromal cells, such as synovial fibroblasts (FLS), despite their crucial involvement in the pathogenesis of RA. Here we integrate DNA architecture, 3D chromatin interactions, DNA accessibility, and gene expression in FLS, B cells, and T cells with genetic fine mapping of RA loci. Results: We identify putative causal variants, enhancers, genes, and cell types for 30-60% of RA loci and demonstrate that FLS account for up to 24% of RA heritability. TNF stimulation of FLS alters the organization of topologically associating domains, chromatin state, and the expression of putative causal genes such as TNFAIP3 and IFNAR1. Several putative causal genes constitute RA-relevant functional networks in FLS with roles in cellular proliferation and activation. Finally, we demonstrate that risk variants can have joint-specific effects on target gene expression in RA FLS, which may contribute to the development of the characteristic pattern of joint involvement in RA. Conclusion: Overall, our research provides the first direct evidence for a causal role of FLS in the genetic susceptibility for RA accounting for up to a quarter of RA heritability.
  • Effect of different corticosteroid dosing regimens on clinical outcomes in boys with Duchenne Muscular Dystrophy: a randomized clinical trial.

    Guglieri, Michela; Bushby, Kate; McDermott, Michael P; Hart, Kimberly A; Tawil, Rabi; Martens, William B; Herr, Barbara E; McColl, Elaine; Speed, Chris; Wilkinson, Jennifer; et al. (American Medical Association, 2022-04-19)
    Importance: Corticosteroids improve strength and function in boys with Duchenne muscular dystrophy. However, there is uncertainty regarding the optimum regimen and dosage. Objective: To compare efficacy and adverse effects of the 3 most frequently prescribed corticosteroid regimens in boys with Duchenne muscular dystrophy. Design, setting, and participants: Double-blind, parallel-group randomized clinical trial including 196 boys aged 4 to 7 years with Duchenne muscular dystrophy who had not previously been treated with corticosteroids; enrollment occurred between January 30, 2013, and September 17, 2016, at 32 clinic sites in 5 countries. The boys were assessed for 3 years (last participant visit on October 16, 2019). Interventions: Participants were randomized to daily prednisone (0.75 mg/kg) (n = 65), daily deflazacort (0.90 mg/kg) (n = 65), or intermittent prednisone (0.75 mg/kg for 10 days on and then 10 days off) (n = 66). Main outcomes and measures: The global primary outcome comprised 3 end points: rise from the floor velocity (in rise/seconds), forced vital capacity (in liters), and participant or parent global satisfaction with treatment measured by the Treatment Satisfaction Questionnaire for Medication (TSQM; score range, 0 to 100), each averaged across all study visits after baseline. Pairwise group comparisons used a Bonferroni-adjusted significance level of .017. Results: Among the 196 boys randomized (mean age, 5.8 years [SD, 1.0 years]), 164 (84%) completed the trial. Both daily prednisone and daily deflazacort were more effective than intermittent prednisone for the primary outcome (P < .001 for daily prednisone vs intermittent prednisone using a global test; P = .017 for daily deflazacort vs intermittent prednisone using a global test) and the daily regimens did not differ significantly (P = .38 for daily prednisone vs daily deflazacort using a global test). The between-group differences were principally attributable to rise from the floor velocity (0.06 rise/s [98.3% CI, 0.03 to 0.08 rise/s] for daily prednisone vs intermittent prednisone [P = .003]; 0.06 rise/s [98.3% CI, 0.03 to 0.09 rise/s] for daily deflazacort vs intermittent prednisone [P = .017]; and -0.004 rise/s [98.3% CI, -0.03 to 0.02 rise/s] for daily prednisone vs daily deflazacort [P = .75]). The pairwise comparisons for forced vital capacity and TSQM global satisfaction subscale score were not statistically significant. The most common adverse events were abnormal behavior (22 [34%] in the daily prednisone group, 25 [38%] in the daily deflazacort group, and 24 [36%] in the intermittent prednisone group), upper respiratory tract infection (24 [37%], 19 [29%], and 24 [36%], respectively), and vomiting (19 [29%], 17 [26%], and 15 [23%]). Conclusions and relevance: Among patients with Duchenne muscular dystrophy, treatment with daily prednisone or daily deflazacort, compared with intermittent prednisone alternating 10 days on and 10 days off, resulted in significant improvement over 3 years in a composite outcome comprising measures of motor function, pulmonary function, and satisfaction with treatment; there was no significant difference between the 2 daily corticosteroid regimens. The findings support the use of a daily corticosteroid regimen over the intermittent prednisone regimen tested in this study as initial treatment for boys with Duchenne muscular dystrophy. Trial registration: ClinicalTrials.gov Identifier: NCT01603407.
  • Dietetic management of adults with Phenylketonuria (PKU) in the UK: a care consensus document.

    Robertson, Louise; Adam, Sarah; Ellerton, Charlotte; Ford, Suzanne; Hill, Melanie; Randles, Gemma; Woodall, Alison; Young, Carla; MacDonald, Anita; Robertson, Louise; et al. (MDPI Publishing, 2022-01-28)
    There is an increasing number of adults and elderly patients with phenylketonuria (PKU) who are either early, late treated, or untreated. The principal treatment is a phenylalanine-restricted diet. There is no established UK training for dietitians who work with adults within the specialty of Inherited Metabolic Disorders (IMDs), including PKU. To address this, a group of experienced dietitians specializing in IMDs created a standard operating procedure (SOP) on the dietetic management of adults with PKU to promote equity of care in IMD dietetic services and to support service provision across the UK. The group met virtually over a period of 12 months until they reached 100% consensus on the SOP content. Areas of limited evidence included optimal blood phenylalanine reporting times to patients, protein requirements in older adults, management of weight and obesity, and management of disordered eating and eating disorders. The SOP does not include guidance on maternal PKU management. The SOP can be used as a tool for training dietitians new to the specialty and to raise the standard of education and care for patients with PKU in the UK.
  • Advances of cancer genomics in oncology care.

    Boon, I S; Tan, J; Teo, R P J; Au Yong, T P T; Boon, C S (Elsevier, 2021-12-02)
    No abstract available
  • Secondary (additional) findings from the 100,000 Genomes Project: Disease manifestation, health care outcomes, and costs of disclosure.

    Nolan, Joshua; Buchanan, James; Taylor, John; Almeida, Joao; Bedenham, Tina; Blair, Edward; Broadgate, Suzanne; Butler, Samantha; Cazeaux, Angela; Craft, Judith; et al. (Elsevier, 2023-12-19)
    Purpose: The UK 100,000 Genomes Project offered participants screening for additional findings (AFs) in genes associated with familial hypercholesterolemia (FH) or hereditary cancer syndromes including breast/ovarian cancer (HBOC), Lynch, familial adenomatous polyposis, MYH-associated polyposis, multiple endocrine neoplasia (MEN), and von Hippel-Lindau. Here, we report disclosure processes, manifestation of AF-related disease, outcomes, and costs. Methods: An observational study in an area representing one-fifth of England. Results: Data were collected from 89 adult AF recipients. At disclosure, among 57 recipients of a cancer-predisposition-associated AF and 32 recipients of an FH-associated AF, 35% and 88%, respectively, had personal and/or family history evidence of AF-related disease. During post-disclosure investigations, 4 cancer-AF recipients had evidence of disease, including 1 medullary thyroid cancer. Six women with an HBOC AF, 3 women with a Lynch syndrome AF, and 2 individuals with a MEN AF elected for risk-reducing surgery. New hyperlipidemia diagnoses were made in 6 FH-AF recipients and treatment (re-)initiated for 7 with prior hyperlipidemia. Generating and disclosing AFs in this region cost £1.4m; £8680 per clinically significant AF. Conclusion: Generation and disclosure of AFs identifies individuals with and without personal or familial evidence of disease and prompts appropriate clinical interventions. Results can inform policy toward secondary findings.
  • Three-country snapshot of ornithine transcarbamylase deficiency.

    Seker Yilmaz, Berna; Baruteau, Julien; Arslan, Nur; Aydin, Halil Ibrahim; Barth, Magalie; Bozaci, Ayse Ergul; Brassier, Anais; Canda, Ebru; Cano, Aline; Chronopoulou, Efstathia; et al. (MDPI, 2022-10-27)
    X-linked ornithine transcarbamylase deficiency (OTCD) is the most common urea cycle defect. The disease severity ranges from asymptomatic carrier state to severe neonatal presentation with hyperammonaemic encephalopathy. We audited the diagnosis and management of OTCD, using an online 12-question-survey that was sent to 75 metabolic centres in Turkey, France and the UK. Thirty-nine centres responded and 495 patients were reported in total. A total of 208 French patients were reported, including 71 (34%) males, 86 (41%) symptomatic and 51 (25%) asymptomatic females. Eighty-five Turkish patients included 32 (38%) males, 39 (46%) symptomatic and 14 (16%) asymptomatic females. Out of the 202 UK patients, 66 (33%) were male, 83 (41%) asymptomatic and 53 (26%) symptomatic females. A total of 19%, 12% and 7% of the patients presented with a neonatal-onset phenotype in France, Turkey and the UK, respectively. Vomiting, altered mental status and encephalopathy were the most common initial symptoms in all three countries. While 69% in France and 79% in Turkey were receiving protein restriction, 42% were on a protein-restricted diet in the UK. A total of 76%, 47% and 33% of patients were treated with ammonia scavengers in Turkey, France and the UK, respectively. The findings of our audit emphasize the differences and similarities in manifestations and management practices in three countries.
  • Case report: ISG15 deficiency caused by novel variants in two families and effective treatment with Janus kinase inhibition

    Burleigh, Alice; Moraitis, Elena; Al Masroori, Eman; Al-Abadi, Eslam; Hong, Ying; Omoyinmi, Ebun; Titheradge, Hannah; Stals, Karen; Jones, Wendy D; Gait, Anthony; et al. (Frontiers Media, 2023-12-05)
    ISG15 deficiency is a rare disease caused by autosomal recessive variants in the ISG15 gene, which encodes the ISG15 protein. The ISG15 protein plays a dual role in both the type I and II interferon (IFN) immune pathways. Extracellularly, the ISG15 protein is essential for IFN-γ-dependent anti-mycobacterial immunity, while intracellularly, ISG15 is necessary for USP18-mediated downregulation of IFN-α/β signalling. Due to this dual role, ISG15 deficiency can present with various clinical phenotypes, ranging from susceptibility to mycobacterial infection to autoinflammation characterised by necrotising skin lesions, intracerebral calcification, and pulmonary involvement. In this report, we describe novel variants found in two different families that result in complete ISG15 deficiency and severe skin ulceration. Whole exome sequencing identified a heterozygous missense p.Q16X ISG15 variant and a heterozygous multigene 1p36.33 deletion in the proband from the first family. In the second family, a homozygous total ISG15 gene deletion was detected in two siblings. We also conducted further analysis, including characterisation of cytokine dysregulation, interferon-stimulated gene expression, and p-STAT1 activation in lymphocytes and lesional tissue. Finally, we demonstrate the complete and rapid resolution of clinical symptoms associated with ISG15 deficiency in one sibling from the second family following treatment with the Janus kinase (JAK) inhibitor baricitinib.
  • Genotype-phenotype correlation in Junctional Epidermolysis Bullosa: signposts to severity

    Wen, David; Hunjan, Manrup; Bardhan, Ajoy; Harper, Natasha; Ogboli, Malobi; Ozoemena, Linda; Liu, Lu; Fine, Jo-David; Chapple, Iain; Balacco, Dario L; et al. (Elsevier, 2024-06)
    Junctional epidermolysis bullosa (JEB) is a rare autosomal recessive genodermatosis with a broad spectrum of phenotypes. Current genotype-phenotype paradigms are insufficient to accurately predict JEB subtype and characteristics from genotype, particularly for splice site mutations, which account for over a fifth of disease-causing mutations in JEB. This study evaluated genetic and clinical findings from a JEB cohort, investigating genotype-phenotype correlations through bioinformatic analyses and comparison with previously reported mutations. Eighteen unique mutations in LAMB3, LAMA3, LAMC2 or COL17A1 were identified from seventeen individuals. Seven had severe JEB, nine intermediate JEB and one laryngo-onycho-cutaneous syndrome. Seven mutations were previously unreported. Deep phenotyping was completed for all intermediate JEB cases and demonstrated substantial variation between individuals. Splice site mutations underwent analysis with SpliceAI, a state-of-the-art artificial intelligence tool, in order to predict resultant transcripts. Predicted functional effects included exon skipping and cryptic splice site activation, which provided potential explanations for disease severity and in most cases correlated with lamimin-332 immunofluorescence. RT-PCR was performed for one case to investigate resultant transcripts produced from the splice site mutation. This study expands the JEB genomic and phenotypic landscape. AI tools show potential for predicting functional effects of splice site mutations and may identify candidates for confirmatory laboratory investigation. Investigation of RNA transcripts will help to further elucidate genotype-phenotype correlations for novel mutations.
  • The impact of genomic context on outcomes of solid cancer patients treated with genotype-matched targeted therapies: a comprehensive review

    Fulton-Ward, T; Middleton, Gary; Middleton, Gary; Oncology; Medical and Dental; University of Birmingham; University Hospitals Birmingham NHS Foundation Trust (Elsevier, 2023-10-22)
    Background: A critical need in the field of genotype-matched targeted therapy in cancer is to identify patients unlikely to respond to precision medicines. This will manage expectations of individualised therapies and avoid clinical progression to a point where institution of alternative treatments might not be possible. We examined the evidence base of the impact of genomic context on which targeted alterations are inscribed to identify baseline biomarkers distinguishing those obtaining the expected response from those with less benefit from targeted therapies. Methods: A comprehensive narrative review was conducted: scoping searches were undertaken in PubMed, Cochrane Database of Systematic Reviews, and PROSPERO. Outcomes included in meta-analysis were progression-free and overall survival. Data was extracted from Kaplan-Meier and used to calculate hazard ratios. Studies presenting data on two molecular sub-cohorts (e.g., co-mutation vs no co-mutation) were included in fixed meta-analysis. Other studies were used for descriptive purposes. Results: The presence of concomitant driver mutations, higher tumour mutational burden(TMB), greater copy number burden and APOBEC signatures significantly reduces benefits of targeted therapy in lung cancers in never smokers(LCINS) and breast cancer; cancers with low TMB. LCINS have significantly poorer outcomes if their cancers harbour p53 co-mutations, an effect also seen in HER2+ breast cancer patients (trastuzumab) and head and neck cancer (PI3K inhibition). PI3K co-alterations have less impact when targeting EGFR-mutations and ALK-fusions, but significantly reduce the impact of targeting HER2- and MET-amplifications. SMARCA4 co-mutations predict for poor outcome in patients treated with osimertinib and sotorasib. In BRAF-mutant melanoma, whilst there are no genomic features distinguishing exceptional responders from primary progressors, there are clear transcriptomic features dichotomising these outcomes. Conclusion: To our knowledge this is the most comprehensive review to date of the impact of genomic context on outcomes with targeted therapy. It represents a valuable resource informing progress towards contextualised precision medicine.
  • Re: Inadequacy of PCR genotyping in advanced non-small cell lung cancer: EGFR L747_A755delinsSS Exon 19 deletion is not detected by the real-time PCR IdyllaTM EGFR mutation test but is detected by ctDNA NGS and responds to osimertinib.

    Bennett, Phil; Finall, Alison; Medeiros, Filomena; Gerrard, Gareth; Taniere, Phillipe; Taniere, Phillipe; Histopathology; Medical and Dental (Elsevier, 2022-08-04)
    No abstract available

View more