• Login
    View Item 
    •   Home
    • University Hospitals Birmingham NHS Foundation Trust
    • Medicine
    • Ophthalmology
    • View Item
    •   Home
    • University Hospitals Birmingham NHS Foundation Trust
    • Medicine
    • Ophthalmology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of West Midlands Evidence RepositoryCommunitiesAuthorsTitlesPublication DateSubjectsPublication TypesJournalPublisherThis CollectionAuthorsTitlesPublication DateSubjectsPublication TypesJournalPublisherProfilesView

    My Account

    LoginRegister

    About

    AboutPolicies Privacy NoticeBlack Country Healthcare NHS Foundation TrustCoventry and Warwickshire Partnership NHS TrustDudley Group NHS Foundation TrustGeorge Eliot Hospital NHS TrustSandwell and West Birmingham NHS TrustSouth Warwickshire University NHS Foundation TrustUniversity Hospitals Birmingham NHS Foundation TrustUniversity Hospitals Coventry and Warwickshire NHS TrustWalsall Healthcare NHS Trust

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Characteristics of publicly available skin cancer image datasets: a systematic review.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Publisher version
    View Source
    Access full-text PDFOpen Access
    View Source
    Check access options
    Check access options
    Author
    Wen, David
    Khan, Saad M
    Ji Xu, Antonio
    Ibrahim, Hussein
    Smith, Luke
    Caballero, Jose
    Zepeda, Luis
    de Blas Perez, Carlos
    Denniston, Alastair K
    Liu, Xiaoxuan
    Matin, Rubeta N
    Show allShow less
    Publication date
    2021-11-09
    Subject
    Dermatology
    
    Metadata
    Show full item record
    Abstract
    Publicly available skin image datasets are increasingly used to develop machine learning algorithms for skin cancer diagnosis. However, the total number of datasets and their respective content is currently unclear. This systematic review aimed to identify and evaluate all publicly available skin image datasets used for skin cancer diagnosis by exploring their characteristics, data access requirements, and associated image metadata. A combined MEDLINE, Google, and Google Dataset search identified 21 open access datasets containing 106 950 skin lesion images, 17 open access atlases, eight regulated access datasets, and three regulated access atlases. Images and accompanying data from open access datasets were evaluated by two independent reviewers. Among the 14 datasets that reported country of origin, most (11 [79%]) originated from Europe, North America, and Oceania exclusively. Most datasets (19 [91%]) contained dermoscopic images or macroscopic photographs only. Clinical information was available regarding age for 81 662 images (76·4%), sex for 82 848 (77·5%), and body site for 79 561 (74·4%). Subject ethnicity data were available for 1415 images (1·3%), and Fitzpatrick skin type data for 2236 (2·1%). There was limited and variable reporting of characteristics and metadata among datasets, with substantial under-representation of darker skin types. This is the first systematic review to characterise publicly available skin image datasets, highlighting limited applicability to real-life clinical settings and restricted population representation, precluding generalisability. Quality standards for characteristics and metadata reporting for skin image datasets are needed.
    Citation
    Wen D, Khan SM, Ji Xu A, Ibrahim H, Smith L, Caballero J, Zepeda L, de Blas Perez C, Denniston AK, Liu X, Matin RN. Characteristics of publicly available skin cancer image datasets: a systematic review. Lancet Digit Health. 2022 Jan;4(1):e64-e74. doi: 10.1016/S2589-7500(21)00252-1. Epub 2021 Nov 9
    Type
    Article
    Handle
    http://hdl.handle.net/20.500.14200/5096
    Additional Links
    https://www.sciencedirect.com/journal/the-lancet-digital-health
    DOI
    10.1016/S2589-7500(21)00252-1
    PMID
    34772649
    Journal
    The Lancet Digital Health
    Publisher
    Elsevier
    ae974a485f413a2113503eed53cd6c53
    10.1016/S2589-7500(21)00252-1
    Scopus Count
    Collections
    Ophthalmology

    entitlement

    DSpace software (copyright © 2002 - 2025)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.