• Login
    View Item 
    •   Home
    • University Hospitals Birmingham NHS Foundation Trust
    • Medicine
    • Cardiology
    • View Item
    •   Home
    • University Hospitals Birmingham NHS Foundation Trust
    • Medicine
    • Cardiology
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of West Midlands Evidence RepositoryCommunitiesAuthorsTitlesPublication DateSubjectsPublication TypesJournalPublisherThis CollectionAuthorsTitlesPublication DateSubjectsPublication TypesJournalPublisherProfilesView

    My Account

    LoginRegister

    About

    AboutPolicies Privacy NoticeBlack Country Healthcare NHS Foundation TrustCoventry and Warwickshire Partnership NHS TrustDudley Group NHS Foundation TrustGeorge Eliot Hospital NHS TrustSandwell and West Birmingham NHS TrustSouth Warwickshire University NHS Foundation TrustUniversity Hospitals Birmingham NHS Foundation TrustUniversity Hospitals Coventry and Warwickshire NHS TrustWalsall Healthcare NHS Trust

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A fast, accurate, and generalisable heuristic-based negation detection algorithm for clinical text.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Publisher version
    View Source
    Access full-text PDFOpen Access
    View Source
    Check access options
    Check access options
    Author
    Slater, Karin
    Bradlow, William
    Motti, Dino Fa
    Hoehndorf, Robert
    Ball, Simon
    Gkoutos, Georgios V
    Publication date
    2021-01-16
    Subject
    Cardiology
    
    Metadata
    Show full item record
    Abstract
    Negation detection is an important task in biomedical text mining. Particularly in clinical settings, it is of critical importance to determine whether findings mentioned in text are present or absent. Rule-based negation detection algorithms are a common approach to the task, and more recent investigations have resulted in the development of rule-based systems utilising the rich grammatical information afforded by typed dependency graphs. However, interacting with these complex representations inevitably necessitates complex rules, which are time-consuming to develop and do not generalise well. We hypothesise that a heuristic approach to determining negation via dependency graphs could offer a powerful alternative. We describe and implement an algorithm for negation detection based on grammatical distance from a negatory construct in a typed dependency graph. To evaluate the algorithm, we develop two testing corpora comprised of sentences of clinical text extracted from the MIMIC-III database and documents related to hypertrophic cardiomyopathy patients routinely collected at University Hospitals Birmingham NHS trust. Gold-standard validation datasets were built by a combination of human annotation and examination of algorithm error. Finally, we compare the performance of our approach with four other rule-based algorithms on both gold-standard corpora. The presented algorithm exhibits the best performance by f-measure over the MIMIC-III dataset, and a similar performance to the syntactic negation detection systems over the HCM dataset. It is also the fastest of the dependency-based negation systems explored in this study. Our results show that while a single heuristic approach to dependency-based negation detection is ignorant to certain advanced cases, it nevertheless forms a powerful and stable method, requiring minimal training and adaptation between datasets. As such, it could present a drop-in replacement or augmentation for many-rule negation approaches in clinical text-mining pipelines, particularly for cases where adaptation and rule development is not required or possible.
    Citation
    Slater K, Bradlow W, Motti DF, Hoehndorf R, Ball S, Gkoutos GV. A fast, accurate, and generalisable heuristic-based negation detection algorithm for clinical text. Comput Biol Med. 2021 Mar;130:104216. doi: 10.1016/j.compbiomed.2021.104216. Epub 2021 Jan 16
    Type
    Article
    Other
    Handle
    http://hdl.handle.net/20.500.14200/7591
    Additional Links
    http://www.sciencedirect.com/science/journal/00104825
    DOI
    10.1016/j.compbiomed.2021.104216
    PMID
    33484944
    Journal
    Computers in Biology and Medicine
    Publisher
    Elsevier
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.compbiomed.2021.104216
    Scopus Count
    Collections
    Cardiology

    entitlement

    DSpace software (copyright © 2002 - 2025)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.